From dissecting ignorance to solving algebraic problems

نویسنده

  • Bilal M. Ayyub
چکیده

Engineers and scientists are increasingly required to design, test, and validate new complex systems in simulation environments and/or with limited experimental results due to international Epistemic Uncertainty Workshop, Sandia National Laboratories, Albuquerque, NM, August 6-7, 2002 © Ayyub 2002 2 and/or budgetary restrictions. Dealing with complex systems requires assessing knowledge and information by critically evaluating them in terms relevance, completeness, non-distortion, coherence, and other key measures. Using the concepts and definitions from evolutionary knowledge and epistemology, ignorance is examined and classified in the paper. Two ignorance states for a knowledge agent are identified: (1) non-reflective (or blind) state, i.e., the person does not know of self-ignorance, a case of ignorance of ignorance; and (2) reflective state, i.e., the person knows and recognizes self-ignorance. Ignorance can be viewed to have a hierarchal classification based on its sources and nature as provided in the paper. The paper also explores limits on knowledge construction, closed and open world assumptions, and fundamentals of evidential reasoning using belief revision and diagnostics within the framework of ignorance analysis for knowledge construction. The paper also examines an algebraic problem set as identified by Sandia National Laboratories to be a basic building block for uncertainty propagation in computational mechanics. Solution algorithms are provided for the problem set for various assumptions about the state of knowledge about its parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations

In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...

متن کامل

Biorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems

In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...

متن کامل

Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎...

متن کامل

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2004